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Precession of the Earth's axis (10.0 points)

Introduction

It has been known since ancient times that the Earth's axis of rotation precesses. That is, the axis itself
rotates around the line perpendicular to the ecliptic plane, i.e., the plane containing the Earth's orbit
around the Sun. Ancient Greek astronomer Hipparchus concluded that the annual angular displacement
of the axis was approximately 45'' (seconds of arc), which would imply that the period of axial precession
is around 29000 years. Modern measurements indicate that the period is approximately 25800 years. In
this problem, you are asked to investigate this phenomenon using Newtonian mechanics.

You may need the following constants:

• gravitational constant: 𝐺 = 6.67 × 10−11 Nm2/kg2

• average radius of Earth: 𝑅 = 6.371 × 106 m
• mass of the Earth: 𝑀𝐸 = 5.972 × 1024 kg
• average distance of the Sun from the Earth: 𝑑𝑆𝐸 = 1.496 × 1011 m
• mass of the Sun: 𝑀𝑆 = 1.989 × 1030 kg
• average distance of the Moon from the Earth: 𝑑𝑀𝐸 = 3.844 × 108 m
• mass of the Moon: 𝑀𝑀 = 7.348 × 1022 kg
• Earth's axial tilt: 𝛼 = 23.5∘

Part A. The shape of the Earth (1.0 points)

The Sun and theMoon exert nonzero torques on the Earth because of its non-spherical shape, giving rise
to its axial precession. The main reason behind the Earth's non-spherical shape is the centrifugal force
caused by the Earth's rotation about its axis. The tectonic plates located on the Earth's surface have
deformed over millions of years to minimize stress within them. Therefore, as an approximation, let us
model the Earth as a large liquid droplet of uniform density whose shape is determined by centrifugal
and gravitational forces. In this model, the Earth's surface is an oblate spheroid (ellipsoid of revolution)
characterized by the polar radius 𝑅𝑝 and the equatorial radius 𝑅𝑒 (see Figure A.1).

Figure A.1. The ellipsoidal shape of the Earth. The polar and equatorial radii are indicated.
𝛼 = 23.5∘ is the angle between the Earth's axis of rotation and the normal of the ecliptic plane.
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The difference between the equatorial and polar radii of the Earth, ℎmax = 𝑅𝑒 − 𝑅𝑝 is much smaller than
the average radius 𝑅 = (𝑅𝑒 + 𝑅𝑝)/2. Up to a dimensionless factor, the value of ℎmax can be expressed in
terms of the angular speed of the Earth's rotation 𝜔, its mass 𝑀𝐸 and average radius 𝑅 as

ℎmax ∝ 𝐺−1𝜔𝛽𝑀𝛾
𝐸𝑅𝛿,

where 𝐺 is the gravitational constant, and 𝛽, 𝛾 and 𝛿 are constant exponents.

A.1 Find the values of exponents 𝛽, 𝛾 and 𝛿. 0.8 pt

A.2 Calculate the numerical value of ℎmax assuming that the dimensionless factor
in the relation given above equals 1.

0.2 pt

Regardless of whether you were able to find ℎmax in part A.2., use the empirical value ℎmax = 21 km in
the following questions.

Part B. The time-averaged gravitational field of the Sun (3.2 points)

To see why the Sun exerts a nonzero torque (with respect to the center of the Earth) on our planet,
consider Figure B.1 below. The difference in distance from the Sun causes the gravitational force 𝐹1 to
be greater than its counterpart 𝐹2.

Figure B.1. Explanation of the nonzero torques exerted by the Sun (right side of the figure) on
the Earth (left side).

The magnitude of this torque acting on the Earth varies continuously during the year. In the position
shown in Figure B.1, the torque ismaximal, a quarter of a year later, due to symmetry, the torquebecomes
zero. After half a year, it reaches the maximum again, three-quarters of a year later it is zero once again,
and so on. Since the period of axial precession is much larger than one year, this time-dependent torque
can be approximated well by its one-year average.

To calculate the average torque exerted by the Sun on the Earth, let us determine first the time average
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of the gravitational field generated by the Sun in the vicinity of the Earth. This average can be calculated
as the field of a uniformly dense mass ring, a Sun ring, whose mass equals the mass of the Sun 𝑀𝑆 and
whose radius equals the average distance between the Sun and the Earth 𝑑𝑆𝐸 (see Figure B.2).

Figure B.2. Time averaging is equivalent to uniformly spreading the Sun along the circle of
radius 𝑑𝑆𝐸.

Let our cylindrical coordinate system have the origin at the center of the Earth, and let the 𝑧 axis be
perpendicular to the ecliptic plane (i.e. the plane of the ring). The axis of rotation of the Earth makes an
angle of 𝛼 = 23.5∘ with the 𝑧 axis.

B.1 Find the direction andmagnitude of the gravitational field generated by the Sun
ring at a point on the 𝑧 axis. Write your answer in terms of 𝑀𝑆, 𝑑𝑆𝐸, and the
coordinate 𝑧. Assume that |𝑧| ≪ 𝑑𝑆𝐸.

1.0 pt

B.2 Find the direction andmagnitude of the gravitational field generated by the Sun
ring at a point in the ecliptic plane whose distance from the origin is 𝑟. Assume
that 𝑟 ≪ 𝑑𝑆𝐸.

2.2 pt

Part C. The torque acting on the Earth (2.6 points)

In this section, you are asked to determine the torque exerted on the Earth due to the gravitational field
obtained inPart B. For simplicity, consider the Earth as a rigid bodywith homogeneousmass distribution.
Let us take into account that the rotational ellipsoid can be imagined as if we removed excess parts from
a sphere with the equatorial radius of Earth 𝑅𝑒 (see Figure C.1).

Figure C.1. The ellipsoidal shape of the Earth can be imagined as if the excess parts were
removed from a complete sphere of radius 𝑅𝑒.
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C.1 Find themass𝑚 of one of the two excess regions indicated in Figure C.1. Express
your answer in terms of ℎmax, the mass of the Earth 𝑀𝐸, and its polar radius 𝑅𝑝.

0.8 pt

It can be shown that the torque acting on the excess regions is equivalent to the torque acting on two
pointmasses, each with amass equal to 2𝑚/5, positioned at the endpoints 𝐴 and 𝐵 of the polar diameter
(see Figure C.1).

C.2 Given this idea, find the torque 𝜏 exerted by the Sun ring on the Earth. Express
your answer in terms of𝑀𝐸, 𝑀𝑆, 𝑑𝑆𝐸, 𝑅 (the average radius), ℎmax and the angle
𝛼. You can use that ℎmax ≪ 𝑅.

1.8 pt

Part D. Angular speed of the precession of the Earth's axis (2.0 points)

The Earth's axis of rotation moves very slowly around the 𝑧 axis in a conical motion. That is, it precesses.

D.1 Give an expression for the period 𝑇1 of precession of the Earth's axis. Express
your answer in terms of 𝑀𝑆, 𝑑𝑆𝐸, the angular speed 𝜔 of the Earth's rotation,
ℎmax, 𝑅 and 𝛼.

1.8 pt

D.2 Calculate the precession period 𝑇1 in years. 0.2 pt

Part E. The effect of the Moon (1.2 points)

The value obtained in Part D is much larger than the observed value. The reason for this is that so far
we have only considered the torque exerted by the Sun, and neglected the effect of the Moon. In the
following calculations, assume that the Moon's orbit is in the ecliptic plane, and that the orbit of the
Moon around the Earth is a circle of radius 𝑑𝑀𝐸. Let us denote the mass of the Moon by 𝑀𝑀 and the
period of precession in this modified model by 𝑇2.

E.1 By what factor 𝑇2/𝑇1 does the period of precession of the Earth's axis change if
we also take into account the torque exerted by the Moon? Give your answer
in terms of 𝑑𝑀𝐸, 𝑑𝑆𝐸, 𝑀𝑆 and 𝑀𝑀 .

1.0 pt

E.2 By substituting the data, calculate the period of precession 𝑇2 in years. 0.2 pt
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Waves and Phase Transitions in Spin Systems (10.0 points)
Introduction

In classical physics, angular momentum arises from the motion of an object around an axis - whether it
be a spinning top, a rotating planet, or an orbiting electron in the atom. However, in quantum physics,
fundamental particles possess an intrinsic and quantized form of angular momentum called spin. This
property plays a crucial role in various physical phenomena, ranging from materials properties, such as
magnetism, to modern applications, such as quantum computing.

In this problem we will treat spin classically, which will lead to some qualitatively correct results. You will
explore the physics of spin systems through spin-spin interactions, evolution under magnetic fields, and
statistical physics to understand the emergence of spin waves and phase transitions in magnets.

Useful information:

cosh(𝑥) ≡ 𝑒𝑥+𝑒−𝑥
2 , sinh(𝑥) ≡ 𝑒𝑥−𝑒−𝑥

2 , tanh(𝑥) ≡ sinh(𝑥)
cosh(𝑥) ≈ 𝑥 − 1

3 𝑥3 for |𝑥| ≪ 1

The magnetic field due to a magnetic dipole of moment ⃗𝜇 at a position ⃗𝑟 away from it is given by (𝜇0 is is
the vacuum permeability):

𝐵⃗ = 𝜇𝑜
4𝜋 (3( ⃗𝜇 ⋅ ⃗𝑟) ⃗𝑟

𝑟5 − ⃗𝜇
𝑟3 ) (1)

Part A. Precession and interactions of magnetic dipoles (1.2 points)

Consider a ring of radius 𝑅, total mass 𝑀 , and charge 𝑄 > 0 distributed uniformly. The ring rotates with
an angular speed 𝜔 around a perpendicular axis that passes through its center of mass.

A.1 It is possible to write the ring's magnetic moment ⃗𝜇 in terms of its angular mo-
mentum 𝐿⃗ as ⃗𝜇 = 𝛾𝐿⃗. Find the constant 𝛾, called the gyromagnetic ratio, of this
system in terms of 𝑄 and 𝑀 .

0.3 pt

The ring is placed in a weak uniform magnetic field 𝐵⃗ = 𝐵 ̂𝑧 , making an angle 𝜃 with 𝜔⃗, see Figure A.1.

Figure A.1.
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A.2 Find the angular frequency 𝜔𝐿 of the angular momentum precession (the so-
called Larmor frequency) due to the external magnetic field in terms of 𝐵 and
𝛾. Take the positive direction to be counter-clockwise with respect to +𝑧.

0.4 pt

Now we turn off the external magnetic field and place an identical ring at a horizontal distance 𝑑 ≫ 𝑅
from the original ring such that the magnetic moment of the new ring ⃗𝜇2 makes an angle 𝜃 with ⃗𝜇1, see
Figure A.2.

Figure A.2.

A.3 The magnetic interaction energy between the two rings can be written as 𝑈 =
𝐽0𝐿⃗1 ⋅𝐿⃗2, where 𝐽0 is a constant and 𝐿⃗𝑖 is the angularmomentum of the 𝑖th ring.
Find 𝐽0 in terms of 𝛾, 𝑑 and fundamental constants.

0.5 pt

Part B. Spin Waves (4.5 points)

Inwhat followswe investigate the dynamics of spins. A spin is a particlewith intrinsic angularmomentum
⃗𝑆, which has an associated magnetic moment ⃗𝜇 related to ⃗𝑆 via the gyromagnetic ratio as in Part A.1,
⃗𝜇 = 𝛾 ⃗𝑆.

The magnetic dipoles of two spins interact with each other. However, this interaction is negligible com-
pared to another interaction arising from a quantummechanical origin, which is not present in classical
systems. Interestingly, the energy associated with this quantum interaction has the same form which
we found in Part A.3, scaling with ⃗𝑆1 ⋅ ⃗𝑆2, albeit with the opposite sign.

Now we will look at a very long chain of spins. The positions of the spins are fixed along the 𝑥-axis,
with a distance 𝑎 separating them, see Figure B.1. We will approximate the total energy of the system by
considering the interactions between nearest neighbors only, so that the energy can be written as

𝐸 = −𝐽 ∑
𝑖

⃗𝑆𝑖 ⋅ ⃗𝑆𝑖+1

where 𝐽 > 0 is the interaction strength, and ⃗𝑆𝑖 is the spin angular momentum vector of the 𝑖th dipole,
with magnitude 𝑆. The spin vectors are free to rotate in three dimensions. Notice that the sign of the
energy is different from the last part. This interaction is purely quantum mechanical.
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Figure B.1.

B.1 The energy terms containing ⃗𝑆𝑖 in the sum above can be viewed as the interac-
tion energy between an effectivemagnetic field 𝐵⃗𝑖,eff and themagneticmoment
of ⃗𝑆𝑖. Find 𝐵⃗𝑖,eff and express your answer in terms of 𝐽 , the gyromagnetic ratio
𝛾, and other spins ⃗𝑆𝑗 (specify the indices 𝑗 in relation to 𝑖)

0.3 pt

B.2 Using the concept of effective magnetic field, express the rate of change of the
𝑖th spin vector, 𝑑 ⃗𝑆𝑖/𝑑𝑡, in terms of 𝐽, ⃗𝑆𝑖, and other spins ⃗𝑆𝑗 (specify the indices
𝑗 in relation to 𝑖).

0.3 pt

For the rest of Part B, assume that the system is highly magnetized along the 𝑧 direction, so we can
use the approximations 𝑆𝑖,𝑧 ≈ 𝑆 and 𝑑𝑆𝑖,𝑧/𝑑𝑡 ≈ 0 for each spin, see Figure B.2. In this regime, the set
of equations describing the spins time evolution is satisfied by a traveling wave solution for 𝑆𝑖,𝑥and 𝑆𝑖,𝑦
characterized by a wave vector 𝑘 and angular frequency 𝜔.

Figure B.2.

B.3 Find the relationship between 𝜔 and 𝑘 (known as the dispersion relation, 𝜔(𝑘))
for the spin waves in terms of 𝐽, 𝑆 and 𝑎. Hint: express the position of the 𝑖th
spin as 𝑥 = 𝑎 ⋅ 𝑖.

2.0 pt

The spin wave described above carries energy and momentum. At low energies, the relation between
its energy and momentum resembles that of a massive classical particle with an effective mass 𝑚eff , a
concept known as a quasi-particle.
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B.4 For small 𝑘 (𝑘 ≪ 1/𝑎), find the effective mass 𝑚eff of the spin wave. Express your
answer in terms of 𝐽, 𝑆, 𝑎 and fundamental constants.

0.6 pt

Spin waves can be experimentally probed using inelastic neutron scattering. Although neutrons have
zero net charge, they have a finite spin, allowing them to interact with other spins.

B.5 Suppose that initially, all the spins in the chain are pointing along the 𝑧 direction.
A neutronwith low energy travels on the 𝑥−𝑦 planemaking an incident angle 𝜃𝑖𝑛
with the chain and scatters with an angle 𝜃𝑜𝑢𝑡 as shown in Figure B.3. Assuming
the neutron excites a single low wave vector spin wave, find the effective mass
𝑚eff of the spin wave, in terms of 𝜃in, 𝜃out and the neutronmass 𝑚𝑛. Assume that
the chain stays at rest.

1.3 pt

Figure B.3.

Part C. Phase transitions in spin chains (4.3 points)

Next we consider the same chainmade of𝑁 spins from Part B, except the spin vectors are now restricted
to point either up or down along the 𝑧-axis, so that the spin component along 𝑧 can be written as 𝑆𝑖,𝑧 =
𝑠𝑖𝑆, where 𝑠𝑖 = ±1, see Figure C.1. In addition to the nearest neighbor interactions, we could have an
external magnetic field pointing along the 𝑧-axis so that the total energy of the system is given by

𝐸 = − ̃𝐽 ∑
𝑖

𝑠𝑖𝑠𝑖+1 − ℎ ∑
𝑖

𝑠𝑖.

We assume ̃𝐽 ≥ 0, and ℎ is a constant dependent on themagnetic field. The spin system is at equilibrium
with a heat bath at temperature 𝑇 . Ignore the edges of the chain.

Figure C.1.
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C.1 Assume first that ̃𝐽 = 0, what is the ratio between the probability to find an arbi-
trary spin aligned to the magnetic field 𝑝↑ to being anti-aligned to the magnetic
field 𝑝↓? Express 𝑝↑/𝑝↓ in terms of ℎ, 𝑇 and fundamental constants.

0.5 pt

C.2 Find the average polarization of the system ̄𝑠 ≡ 1
𝑁 ∑𝑖 𝑠𝑖 for 𝑁 ≫ 1 in terms of

ℎ, 𝑇 and fundamental constants. If the magnetic field ℎ can range from −ℎ0 to
ℎ0, make a sketch of ̄𝑠 as a function of ℎ for the cases ℎ𝑜 ≫ 𝑘𝐵𝑇 , ℎ𝑜 ≈ 𝑘𝐵𝑇 and
ℎ𝑜 ≪ 𝑘𝐵𝑇 .

1.0 pt

In the remaining questions, we turn off the magnetic field, so ℎ = 0, and set ̃𝐽 > 0.

C.3 What is the energy 𝐸𝑔 of the ground state (the lowest energy state)? Express
your answer in terms of ̃𝐽 and 𝑁 .

0.2 pt

Instead of considering the interactions between each spin and its neighbors, we assume that each spin
sees an average polarization ̄𝑠 from its nearest-neighbors.

C.4 Approximate the energy of the system as a sum over all spins

𝐸 = − ̃𝐽eff ∑
𝑖

𝑠𝑖

and express ̃𝐽effin terms of ̃𝐽 and ̄𝑠.

0.2 pt

C.5 Using your result from C.2, find an equation that the average polarization ̄𝑠
must satisfy. The number of solutions to this equation depends on 𝑇 . Find the
critical temperature 𝑇𝑐 at which the number of solutions changes. Express your
answer in terms of ̃𝐽 and fundamental constants.

1.2 pt

C.6 Find all possible values of ̄𝑠 when 𝑇 < 𝑇𝑐 and 𝑇𝑐 −𝑇 ≪ 𝑇𝑐. Express your answers
in terms of 𝑇 and 𝑇𝑐. Sketch all possible values of ̄𝑠 for the temperature 𝑇 in the
range 0 ≤ 𝑇 ≤ 2𝑇𝑐.

1.0 pt

C.7 What magnetic phase of matter does 𝑇 > 𝑇𝑐correspond to? How about when
𝑇 < 𝑇𝑐? Choose between paramagnetic or ferromagnetic.

0.2 pt
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Atmospheric Physics (10.0 points)

The Earth's atmosphere is a complex physical system, and predicting its behavior is crucial for environ-
mental and meteorological purposes. However, even the best theoretical models run on modern com-
puters are insufficient to make precise predictions. In this problem, we will attempt to understand some
of the basic atmospheric phenomena based on simple models. You might need the following constants:
the mean solar power per unit area at Earth, the total solar irradiance 𝐹𝑠 = 1370 W/m2, molar mass of
water 𝜇H2O ≈ 18 g/mol and average molar mass of air 𝜇air ≈ 29 g/mol, The Stefan-Boltzmann constant
𝜎 = 5.67 × 10−8 W/(m2K4). All gases in this problem can be treated as ideal gases. Assume that all air
molecules have 5 degrees of freedom. You may need the following integral:

∫
∞

−∞
𝑒−𝑎𝑥2/2 𝑑𝑥 = √2𝜋

𝑎 , 𝑎 > 0.

Part A. Surface Temperature of the Earth (1.2 points)

In this section, we study the effect of the atmosphere on the Earth surface's temperature. Assume that
Earth and its atmosphere have an albedo 𝑎 = 0.3 for solar radiation, which is the reflected fraction of the
total incident radiation. Youmay use this value in all parts of this problem. In addition, assume the Earth
radiates as a black body.

A.1 Express the average net solar power received by the Earth and atmosphere sys-
tem 𝑃0 in terms of 𝐹𝑠, 𝑎 and 𝑅𝐸, the radius of the Earth.

0.2 pt

A.2 Estimate the temperature of the Earth's surface 𝑇𝑔0 assuming that it is at a
steady state. Ignore the atmosphere.

0.3 pt

Your answer for A.2 should be lower than what you would expect. We now consider adding a thin atmo-
spheric layer at temperature 𝑇𝑎, see Figure A.1. The atmospheric layer transmits a net fraction 𝑡sw of the
incident solar radiation and a net fraction 𝑡lw of the Earth's thermal radiation. Otherwise, you may treat
the atmosphere as a black body.

Figure A.1
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A.3 Assuming the system is in a steady state, calculate 𝑇𝑔, the temperature of the
ground. Use 𝑡sw = 0.9 and 𝑡lw = 0.2.

0.7 pt

Part B. The absorption spectrum of atmospheric gases (1.8 points)

The infrared radiation emitted by Earth has low energy, incapable of exciting electrons within the
molecules, but it has the ability to excite the vibrational and rotational modes of the molecules.

B.1 Consider a simple diatomic molecule modeled as two point masses 𝑚𝐴 and 𝑚𝐵
connected by a spring with spring constant 𝑘. What is the angular frequency of
vibrations 𝜔𝑑?

0.5 pt

B.2 Quantum mechanics dictates that vibrational excitations due to absorbing a
photon can only raise the quantum energy level by one. What is the energy of
the photon 𝐸𝑝 that can excite the vibration in B.1? Neglect recoil effects.

0.2 pt

Quantum mechanics forbids the vibrational modes of symmetric diatomic molecules, such as nitrogen
and oxygen (the most abundant gasses in the Earth's atmosphere) to be excited by light. This explains
why N2 and O2 do not contribute to the green house effect. In general, the absorption of light by
molecules is governed by the allowed energy transitions in them. However, the energy of the light ab-
sorbed does not have to exactly match the energy gap in the molecule. Suppose that a molecule at rest
has a spectral line (an allowed transition) at frequency 𝑓0.

B.3 What is the shift in the spectral line 𝑓 −𝑓0 if the molecule is moving with velocity
𝑣 towards the emitter such that |𝑣| ≪ 𝑐, where 𝑐 is the speed of light.

0.2 pt

For a gas at temperature 𝑇 , the velocity of itsmolecules is distributed according toMaxwell's distribution.
For amolecule ofmass𝑚, the probability to find amolecule's velocity along one dimension to be between
𝑣 and 𝑣 + 𝑑𝑣 is 𝑝1(𝑣)𝑑𝑣, where 𝑝1(𝑣) is a probability distribution function given by

𝑝1(𝑣) = 𝐶 exp(− 𝑚𝑣2

2𝑘𝐵𝑇 )

𝐶 is a normalization constant ensuring the probabilities add up to one, and 𝑘𝐵 is the Boltzmann constant.

B.4 Find the normalization constant 𝐶, assuming that the velocity 𝑣 could range
from −∞ to ∞.

0.2 pt
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B.5 Find the probability distribution function 𝑝2(𝑓) to find amolecule with a spectral
line 𝑓0 shifted to 𝑓 due to thermal motion, up to a normalization factor, in terms
of 𝑓, 𝑓0, 𝑇 , 𝑚 and fundamental constants.

0.3 pt

B.6 Sketch 𝑝2(𝑓) as a function of 𝑓 − 𝑓0, and determine the shift 𝑓⋆ − 𝑓0 at which
𝑝2(𝑓⋆) is a fraction 1/𝑒 of its peak value, where 𝑒 is the natural number.

0.4 pt

Part C. Stability of air in the atmosphere (2.7 points)

Consider a small cylindrical mass of air at height 𝑧 above the ground. The pressure and mass density of
air at that height are 𝑝(𝑧) and 𝜌(𝑧), respectively, see Figure C.1. Assume a uniformdownward gravitational
field 𝑔 and that the pressure on the Earth's surface is 𝑝𝑜.

Figure C.1

C.1 Assuming that the small airmass is at hydrostatic equilibrium, derive an expres-
sion of the rate of change of pressure with respect to height, 𝑑𝑝/𝑑𝑧 in terms of
𝑔 and 𝜌(𝑧).

0.3 pt

C.2 Express 𝑑𝑝/𝑑𝑧 in terms of 𝜇air, 𝑔, 𝑝(𝑧) and 𝑇 (𝑧), the temperature at height 𝑧 and
fundamental constants.

0.2 pt

C.3 Assuming an isothermal atmosphere, 𝑇 (𝑧) = 𝑇 , find an expression for 𝑝(𝑧) in
terms of 𝑧, 𝜇air, 𝑔, 𝑝𝑜, 𝑇 and fundamental constants.

0.2 pt

In a real atmosphere, the temperature is not constant but changes with height. The rate of decrease
of temperature with height Γ(𝑧) = −𝑑𝑇 /𝑑𝑧 is called the lapse rate. Consider a small mass of air rising
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adiabatically in the atmosphere such that it remains at mechanical equilibrium with its surrounding.

C.4 For the adiabatically rising air mass, find the adiabatic lapse rate Γ𝑎 in terms of
𝑐𝑝, the molar specific heat at constant pressure, 𝜇air and 𝑔.

0.6 pt

To analyze the stability of an atmosphere, we imagine starting from an equilibrium state, and then per-
turbing a small mass of air and analyze its response. Consider a small air mass initially in equilibrium
with the surrounding air at height 𝑧 and temperature 𝑇 . It is then adiabatically displaced vertically by a
displacement 𝛿𝑧0. Assume that throughout the motion, the air parcel always has the same pressure as
the surrounding air at the same height. The surrounding atmosphere is unaltered and has a different
lapse rate Γ. Neglect viscosity.

C.5 Find the equation ofmotion for 𝛿𝑧, the instantaneous vertical displacement. Un-
der what condition is the equilibrium at 𝑧 stable? What is the angular frequency
𝜔 of small oscillation? Express your answers in terms of 𝑇 , Γ, 𝑔, 𝜇air and 𝑐𝑝.

1.4 pt

Part D. Moisture (2.7 points)

Even though water constitutes a small portion of the atmosphere, it has a significant role in climate
science. It is responsible for precipitation, and it is the most significant greenhouse gas. The phase of
water depends on what temperature and pressure the water system is at, depicted on a 𝑝 − 𝑇 phase
diagram, see Figure D.1. When the pressure and temperature lie on the coexistence curve, both liquid
and vaporwater can be present in the system. The slope of the coexistence curve is given by the Clausius-
Clapeyron equation:

𝑑𝑝𝑠
𝑑𝑇 = Δ𝑆

Δ𝑉

where 𝑝𝑠 is the saturation pressure, the pressure at the phase transition, Δ𝑆 and Δ𝑉 are the changes in
entropy and volume across the phase transitions, respectively. Treat water vapor as an ideal gas.

Figure D.1
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D.1 Express 𝑑𝑝𝑠/𝑑𝑇 for the water liquid-vapor coexistence curve in terms of the wa-
ter latent heat of evaporation 𝐿, 𝜇H2O, 𝑝𝑠, 𝑇 and fundamental constants.

0.5 pt

D.2 If for some reference temperature 𝑇𝑜, 𝑝𝑠 = 𝑝𝑠𝑜, find an expression for 𝑝𝑠(𝑇 ) in
terms of 𝑝𝑠𝑜, 𝜇H2O, 𝐿, 𝑇 , 𝑇𝑜 and fundamental constants.

0.2 pt

Now we consider a `moist' air mass that rises adiabatically starting from a temperature 𝑇𝑖. The mass
mixing ratio of water vapor (the mass of water vapor relative to the total mass) is 𝜙. Take the air mass to
have a specific molar heat at constant pressure 𝑐𝑝. The universal gas constant is 𝑅 = 8.31 J/(mol K).

D.3 Assuming that the air mass starts at 𝑇𝑖 = 17.0∘C and 𝑝𝑖 = 105 Pa. Find the
temperature 𝑇𝑙 at which liquid water starts forming in it if 𝜙 = 10−2. Assume
that the water content in the air mass stays constant during the rise. Use 𝐿 =
2460 kJ/kg and 𝑝𝑠𝑜 = 1.94 × 103 Pa at 𝑇𝑖 = 17.0∘C.

2.0 pt

Part E. Sun halo (1.6 points)

Under suitable atmospheric conditions, a bright ring appears around the Sun which is called a halo.
Halos are caused by ice crystals present in the upper troposphere. One interesting feature about halos
is that they always appear at a specific angle relative to the direction of the Sun.

Figure E.1. On the left: A photograph showing a halo around the Sun. On the right: The path
of a light ray passing through the prism.

E.1 Consider a simple prism with an apex angle of 𝜑 and direct a light ray onto it at
an incidence angle 𝛼, as shown in Figure E.1. Let the refractive index of the prism
be n. Express the angle of deviation 𝛿 of the light ray after passing through the
prism in terms of 𝛼, 𝑛 and 𝜑.

0.8 pt
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The most common type of halo forms when tiny ice crystals take the shape of regular hexagonal prisms.
Light from the Sun falls onto randomly oriented ice crystals drifting in the atmosphere and scatters into
various directions. However, in certain specific directions, the intensity of the refracted light is maximal,
and this determines the angle at which the bright ring appears.

Figure E.2.

Consider a hexagonal ice prism whose six-fold symmetry axis is perpendicular to the direction of the
Sun's rays. Investigate a light ray that refracts through two rectangular faces of the prism indicated in
Figure E.2. Due to the random orientation of the ice crystals, the light strikes the crystal faces at varying
incidence angles 𝛼.

E.2 Plot on the answer sheet how the deviation angle 𝛿 of the examined light ray
depends on the incidence angle 𝛼 within the interval [20∘, 70∘] in 5∘ increments.
The refractive index of ice is n=1.31.

0.6 pt

E.3 Using the graph from the previous part, determine at what angle the halo ap-
pears the brightest relative to the direction of the Sun.

0.2 pt


