
General guidelines for marking theory
papers

• Granularity for marks is 0.1 p for each tasks.

• Partial marks can be awarded for most aspects.

• A simple numerical error resulting from a typo
is punished by 0.2 p unless the grading scheme
explicitly says otherwise.

• Errors which cause dimensionally wrong results
are punished by at least 50 % of the marks un-
less the grading scheme explicitly says other-
wise.

• Propagating errors are not punished repeatedly
unless they either lead to considerable simplifi-
cations or wrong results whose validity can eas-
ily be checked later (i.e. dimensional errors, di-
vergence etc.).

• Correct equations originating from wrong phys-
ical ideas are not worth any points.

• All solutions should be graded according to only
one marking scheme. If the student used mul-
tiple ideas/approaches, that marking scheme
should be used which results in a higher score.

T1. Precession of the Earth’s axis
(10 pts)

Part A. The shape of the Earth (1.0 p)

A.1. Let us express the dimensions of hmax, G, ω,
ME and R in terms of the base dimensions length L,
mass M and time T:

[hmax] = L,

[G] = L3M−1T−2,

[ω] = T−1,

[ME ] = M,

[R] = L.

The relation given in the problem should hold for the
dimensions too:

L =
(
L3M−1T−2

)−1
T−βMγLδ.

After simplification we get:

L = Lδ−3Mγ+1T2−β ,

from which we get the following equations for the ex-
ponents:

0 = 2− β,

0 = γ + 1,

1 = δ − 3.

From here we get β = 2, γ = −1 and δ = 4.

Task A.1. Pts
Expressing the dimension of G in terms of
base dimensions

0.2

Setting up three equations for the expo-
nents (0.1 p for each)

0.3

Correct values for exponents (0.1 p for each) 0.3
Total for Task A.1. 0.8

A.2. In the light of the result of the previous sub-
part the relation for hmax reads as

hmax ∝ ω2R4

GME
.

Here ω = 2π/(24 h) = 7.27×10−5 s−1. Using 1 as the
dimensionless constant, we get hmax = 21.9 km.

Task A.2. Pts
Correct calculation of ω (even if it was done
inherently)

0.1

Correct value for hmax 0.1
Total for Task A.2. 0.2

Part B. The time-averaged gravitational field
of the Sun (3.2 p)

B.1. Solution I: Using the gravitational potential.
At an arbitrary point on the z axis the gravitational
potential U(z) created by the ring is given by

U(z) = −G
MS√

z2 + d2SE

.

The gravitational field can be found by differentiation
with respect to z:

gz(z) = −dU

dz
= −GMS

z

(z2 + d2SE)
3/2

.

Expanding this to first order in z we get:

gz(z) ≈ −GMS

d3SE

z.

The negative sign means that gz points towards the
center of the Sun ring.

Task B.1., Solution I. Pts
Expressing the magnitude of U(z) on the
axis in terms of z correctly

0.2

Correct sign of U(z) 0.1
Expressing gz as a derivative of U(z). (0.1 p
if negative sign is not included)

0.2

Calculating the derivative correctly 0.2
Approximate form of gz for |z| ≪ dSE 0.1
Indicating correct direction in the figure 0.2
Total for Task B.1. 1.0

Solution II: Using the integration of fields. A small
segment of the Sun ring with mass dM generates a
field

dg =
GdM

z2 + d2SE

on the symmetry axis of the ring at height z (see Fig-
ure B.1 ).
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Figure B.1.

Due to symmetry, the net field at the same point is
parallel with the axis, so only the corresponding com-
ponent of this field should be taken:

dgz = −dg cos θ,

where the negative sign indicates the −z direction.
The angle θ is the same for all segments of the ring
and

cos θ =
z√

z2 + d2SE

.

Using these three equations and integrating over the
mass of the ring we get the net field on the axis at
arbitrary position:

gz = −GMS
z

(z2 + d2SE)
3/2

.

Using the relation |z| ≪ dSE this simplifies to:

gz ≈ −GMS
z

d3SE

.

Task B.1., Solution II. Pts
Writing the gravitational field of an element
of the ring

0.2

Figure with correct geometry 0.1
Taking only the z component for symmetry
reasons

0.1

Summing/integrating over the whole ring 0.1
Calculating the gz at arbitrary z correctly 0.2
Approximate form of gz for |z| ≪ dSE 0.1
Indicating correct direction in the figure 0.2
Total for Task B.1. 1.0

B.2. Solution I: Using Gauss’s theorem. The ra-
dial component of the field gr in the plane of the Sun
ring can be found from the gravitational Gauss’s law
(see Figure B.2 ).

Figure B.2.

Apply Gauss’s theorem for the cylindrical region of
height 2|z| and radius r:

gr 2z × 2πr + gz 2r
2π = 0,

from where we get

gr(r) = − r

2z
gz(z) =

GMS

2d3SE

r.

The field points radially outwards.

Task B.2., Solution I. Pts
Idea of using Gauss’s law 0.5
Taking a cylindrical Gaussian surface with
axis z near the center of the Sun ring

0.4

Writing Gauss’s law correctly in terms of
radial and axial fields (0.3 p in case of mis-
take in areas, 0 p if the error is dimensional)

0.6

Final result for gr is proportional to r (0 p
if not)

0.3

Correct proportionality constant in gr
(0.1 p for error in prefactor, 0 p for dimen-
sional error)

0.2

Indicating correct direction in the figure 0.2
Total for Task B.2. 2.2

Solution II: By integration of potential. Let us take
a point P in the plane of the sung ring at distance r
from the center (see Figure B.3 ).

Figure B.3.

The distance s of a small element of the ring of angu-
lar size dφ located at angle φ with respect to point P
is given by law of cosines:

s =
√
d2SE + r2 − 2dSEr cosφ.

The gravitational potential at point P due to the
small segment can be written as

dU = −GMS

s

dφ

2π
,

so the net potential of the ring at point P is

U(r) = −GMS

2π

2π∫
0

(
d2SE + r2 − 2dSEr cosφ

)− 1
2 dφ.

Let us make the indegrand dimensionless:

U(r) = − GMS

2πdSE

2π∫
0

(
1 +

r2

d2SE

− 2r cosφ

dSE

)− 1
2

dφ.
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To simplify the integral we can use the fact that
r ≪ dSE . Introducing the quantity

ε =
r2

d2SE

− 2r cosφ

dSE

(ε ≪ 1) we can expand the integrand up to second
order in ε:

(1 + ε)
− 1

2 ≈ 1− ε

2
+

3ε2

8
.

After writing back the expression of ε and keeping
terms up to quadratic order in r/dSE we get:

(1 + ε)
− 1

2 ≈ 1− r2

2d2SE

+
r cosφ

dSE
+

3r2 cos2 φ

2d2SE

.

The third term on the right side is canceled after in-
tegrating over φ, so the potential takes the form

U(r) = − GMS

2πdSE

2π∫
0

(
1− r2

2d2SE

+
3r2 cos2 φ

2d2SE

)
dφ.

Using that
∫ 2π

0
cos2 φdφ = π (from the analogy with

the calculation of real power in AC circuits), the in-
tegral can be evaluated:

U(r) = − GMS

2πdSE

(
2π − 2π

r2

2d2SE

+
3πr2

2d2SE

)
.

This simplifies to

U(r) = −GMS

dSE
− GMSr

2

4d3SE

.

The gravitational field is the negative gradient of the
potential:

gr(r) = −dU

dr
=

GMS

2d3SE

r.

Task B.2., Solution II. Pts
Expressing distance s from trigonometry 0.2
Writing the potential generated by a small
element of the ring

0.1

Writing U(r) as an integral 0.1
Taylor expansion of the integrand up to sec-
ond order in r (0.1 p if only first order is
calculated, 0.4 p if the term with cos2 φ is
missing)

0.6

Integrating over φ (0.1 p if the term cos2 φ
is missing)

0.2

Expressing gz as a derivative of U(z). (0.1 p
if negative sign is not included)

0.2

Calculating the derivative correctly 0.1
Final result for gr is proportional to r (0 p
if not)

0.3

Correct proportionality constant in gr
(0.1 p for error in prefactor, 0 p for dimen-
sional error)

0.2

Indicating correct direction in the figure 0.2
Total for Task B.2. 2.2

Part C. The torque acting on the Earth (2.6 p)

C.1. The ellipsoid of revolution can be trans-
formed into a perfect sphere of radius Re (see Figure
C.1.) by stretching it uniformly along the polar diam-
eter by a factor Re/Rp, so the volume of the ellipsoid
is given by

Vellipsoid =
4π

3
R3

e

Rp

Re
=

4π

3
R2

eRp.

Figure C.1.

The volume of one of the excess regions is:

V =
1

2

(
4π

3
R3

e −
4π

3
R2

eRp

)
=

2π

3
R2

ehmax.

The density of the homogeneous Earth is ϱ =
3ME/(4πR

2
eRp), so the mass of one of the excess re-

gions is the following:

m = ϱV =
3ME

4πR2
eRp

2π

3
R2

ehmax =
hmax

2Rp
ME .

Task C.1. Pts
Idea of stretching the ellipsoid into sphere 0.2
Volume of one of the excess regions 0.3
Correct expression for the density of Earth 0.1
Final result for m 0.2
Total for Task C.1. 0.8

C.2. The torque acting on the perfect sphere of
radius Re is zero due to symmetry. From the super-
position principle outlined in the problem, it follows
that the torque τ⃗ acting on the ellipsoid-shaped Earth
is equal in magnitude but opposite in direction to the
torque τ⃗ ′ acting on the two equivalent point masses
(each of mass 2m/5): τ⃗ = −τ⃗ ′.

Figure C.2. The forces acting on the two point masses.
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The magnitude of the torque acting on the point
masses can be calculated with the help of Figure C.2
as

|τ⃗ ′| = |τ⃗ | = 2FzR sinα+ 2FrR cosα,

where

Fz =
2

5
m|gz| =

2

5
mGMS

R cosα

d3SE

,

Fr =
2

5
m|gr| =

2

5
mGMS

R sinα

2d3SE

.

Substituting these forces into the expression for τ ′ and
simplifying we get:

|τ⃗ | = 6

5

GmMS

d3SE

R2 sinα cosα.

Using the result of part C.1. this can be written as

|τ⃗ | = 3

5

GMEMS

d3SE

Rhmax sinα cosα.

The torque τ⃗ ′ is pointing out of the plane of Figure
C.2, so the torque τ⃗ acting on the ellipsoid-shaped
Earth is pointing into the plane.

Task C.2. Pts
Idea that the net torque acting on a perfect
sphere is zero (even if it was done inher-
ently)

0.1

Idea of τ⃗ = −τ⃗ ′ (even if it was done inher-
ently)

0.2

Including the terms coming from Fr and Fz

in the torque correctly (0.4 p each)
0.8

Adding the two contributions with the cor-
rect sign

0.2

Calculation leading to the correct net
torque

0.3

Correct direction for τ⃗ 0.2
Total for Task C.2. 1.8

Part D. Angular speed of the precession of the
Earth’s axis (2.0 p)

D.1. The torque acting on the Earth results a
change in its angular momentum vector L⃗:

τ⃗ =
dL⃗

dt
,

where L⃗ is parallel with the angular velocity of
Earth’s rotation and its magnitude (assuming a uni-
form mass distribution and neglecting the deviation
from a sphere) is given by

|L⃗| = 2

5
MER

2ω.

Since τ⃗ (i.e. the rate of change of the angular momen-
tum vector) is perpendicular to L⃗, the length of L⃗
remains constant but its direction changes, as shown
in Figure D.1. As a result, the vector L⃗ sweeps along
the side of a cone of half apex angle α.

Figure D.1.

Drawing an analogy with a uniform circular motion,
we can write an equation between L, its time deriva-
tive and the angular speed of precession:∣∣∣∣∣dL⃗dt

∣∣∣∣∣ = Ω1|L⃗| sinα.

From this equation the angular speed of precession Ω1

can be expressed:

Ω1 =
τ

L sinα
=

3
5GMEMSRhmax sinα cosα/d3SE

2
5MER2ω sinα

,

where we used our previous result for τ . After simpli-
fying:

Ω1 =
3

2

GMShmax

d3SERω
cosα.

From this the period of precession:

T1 =
2π

Ω1
=

4π

3

d3SERω

GMShmax cosα
.

Task D.1. Pts
Newton’s second law for rotational motion 0.2
Expressing the angular momentum in terms
of ω and the moment of inertia

0.2

Writing the moment of inertia as 2
5MER

2

(0.1 p for incorrect prefactor, 0 p for di-
mensional error)

0.2

Writing |dL⃗/dt| in terms of L, Ω1 and α 0.8
Using the equation Ω1 = 2π/T1 0.1
Finding T1 correctly 0.3
Total for Task D.1. 1.8

D.2. After substituting the data we get the nu-
merical value of the period:

T1 = 80 600 years.

Task D.2. Pts
Correct numerical result for T1.
Full points for correct substitution into a di-
mensionally correct formula. 0 p if the sub-
stitution is incorrect or the formula has a
dimensional error.

0.2

Total for Task D.2. 0.2
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Part E. The effect of the Moon (1.2 p)

E.1. As we have seen in Part D, the angular
speed of precession is proportional to the torque act-
ing on the Earth, which is proportional to the quantity
MS/d

3
SE . If the effect of the Moon is taken into ac-

count, the torques exerted by the Sun and the Moon
add up, and as a result

Ω2 =
MM/d3ME +MS/d

3
SE

MS/d3SE

Ω1.

From this we get a similar expression for the periods:

T2

T1
=

MS/d
3
SE

MM/d3ME +MS/d3SE

.

Task E.1. Pts
Stating that the torques of the Sun and the
Moon add up

0.3

Calculating the torque exerted by the Moon
or using that it is proportional to MM/d3SE

0.4

Expressing T2/T1 correctly (0 p if T1 < T2) 0.3
Total for Task E.1. 1.0

E.2. After substitution we get

T2 = 25 400 years,

which is quite close to the value obtained by modern
observations.

Task E.2. Pts
Correct numerical result for T2.
0 p if the result does not come from substi-
tution (e.g. the student uses the value writ-
ten in the introduction of the problem) or
the substitution is incorrect. 0 p if the for-
mula has dimensional error.

0.2

Total for Task E.2. 0.2
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T2. Waves and Phase Transitions in
Spin Systems (10.0 pts)

Part A. Precession and interactions of mag-
netic dipoles (1.2 points)

A.1: The angular momentum of the planar loop ro-
tating around its perpendicular axis is given by

L⃗ = MR2ω⃗,

while the current generated by the rotation is I =
Q/T = ωQ/2π, then the magnetic dipole moment of
the planar loop is given by

µ⃗ = IAω̂ =
ωQ

2π
πR2ω̂ =

Q

2
R2ω⃗.

It follows that
µ⃗ =

Q

2M
L⃗

and
γ =

Q

2M
.

Grading scheme for Task A.1. Pts
correct result for L (just magnitude is fine) 0.1
correct result for µ (just magnitude is fine) 0.1
correct result for γ 0.1
Total 0.3

A.2: The torque acting on a magnetic dipole due to
an external magnetic field is given by

τ⃗ = µ⃗× B⃗ =
dL⃗

dt
.

𝐵

𝐿

𝐿⊥ Ԧ𝜏 
⊙

𝜔𝐿

𝜃

Since only the component perpendicular to B⃗ can
change, and it rotates with angular velocity ωL, we
write

⇒ LωL sin θ = −µB sin θ

from which we deduce

ωL = −µ

L
B = −γB.

Note: The torque equation can be found by drawing
an analogy to the electric dipole case.

Grading scheme for Task A.2. Pts
Writing the torque formula 0.1
Realizing only the perpendicular compo-
nent L sin θ is changing

0.1

Correct magnitude for ωL 0.1
Correct sign for ωL 0.1
Total 0.4

Grading note: If the final answer for ωL is written
without justification, a maximum of 0.1 is given.

A.3: The magnetic field due to the first dipole on the
second is

B⃗1 on 2 = −µ0

4π

µ⃗1

d3
.

Then

U = −µ⃗2 · B⃗1 on 2 = − µ0

4πd3
µ1µ2 cos(π − θ)

leading to

U =
µ0γ

2

4πd3
L⃗1 · L⃗2

and

J0 ≡ µ0γ
2

4πd3
.

Grading scheme for Task A.3. Pts
Writing the interaction energy correctly 0.1
Writing the correct magnetic field magni-
tude

0.1

Writing the correct magnetic field direc-
tion

0.1

Correct magnitude for J0 0.1
Correct sign for J0 0.1
Total 0.5

Grading note: If the direction of magnetic field is not
explicitly drawn or written, then credit is given if and
only if the sign for interaction energy AND J0 are
correct.

Part B. Spin waves (4.5 points)

B.1: The ith spin interacts with the i − 1 and i + 1
spins, with an energy Ei = −J(S⃗i−1+ S⃗i+1) · S⃗i which
is analogous to Ei = −B⃗i · µ⃗i. Using µ⃗i = γS⃗i, we find

B⃗i,eff =
J

γ

(
S⃗i−1 + S⃗i+1

)
.

Grading scheme for Task B.1. Pts
Explicit understanding that i−1 and i+1
are the contributors for spin i

0.2

Correct result for effective magnetic field 0.1
Total 0.3
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Grading note: Writing the correct result directly re-
ceives full credit.

B.2: Given the effective magnetic field

dS⃗i

dt
= τ⃗ = µ⃗i × B⃗i,eff

= JS⃗i ×
(
S⃗i−1 + S⃗i+1

)
.

Grading scheme for Task B.2. Pts
Writing the rate of change of S⃗ using the
effective magnetic field

0.1

Correct equation 0.2
Total 0.3

Grading note: No partial credit on this Task.

B.3: We can write the rate of change of the x and y
components of S⃗i, keeping in mind the approximation
Si,z ≈ S for all i.

dSi,x

dt
= J [Si,y (Si−1,z + Si+1,z)

−Si,z (Si−1,y + Si+1,y)]

≈ JS (2Si,y − Si−1,y − Si+1,y)

and

dSi,y

dt
= J [−Si,x (Si−1,z + Si+1,z)

−Si,z (Si−1,x + Si+1,x)]

≈ −JS (2Si,x − Si−1,x − Si+1,x) .

The structure of these equations along with the trav-
eling wave behavior leads us to the ansatz

Si,x = δS cos(kx− ωt)

Si,y = δS sin(kx− ωt),

Where δS is the amplitude. This yields

ωδS sin(kx− ωt) = JSδS · [2 sin(kx− ωt)

− sin(kx− ωt− ka)

− sin(kx− ωt+ ka)] .

Using sin(A)+sin(B) = 2 sin
(
A+B

2

)
cos
(
A−B

2

)
, we get

ω(k) = 2JS [1− cos(ka)] .

Note: We can show that the amplitude for Sx equals
that of Sy, but substituting predictions with δSx and δSy,
which leads to

ωδSx sin(kx− ωt) = JSδSy · [2 sin(kx− ωt)

− sin(kx− ωt− ka)

− sin(kx− ωt+ ka)]

ωδSy cos(kx− ωt) = JSδSx · [2 cos(kx− ωt)

− cos(kx− ωt− ka)

− cos(kx− ωt+ ka)]

which can only be satisfied given δSx = δSy.

Grading scheme for Task B.3. Pts
Writing traveling waves as function of kx±
ωt (either sign is okay, either trig function
or complex exponentials is okay)

0.25

Same amplitude for Sx and Sy 0.25
Correct phase relation between Sx and Sy

(a difference of π/2)
0.25

Writing the correct explicit equation of
motion for either Sx or Sy

0.5

Explicit use of Sz ≈ S 0.25
Correct final result (± is okay) 0.5
Total 2.0

Grading note 1: credit should be given to the ampli-
tudes equality even if not proved.
Grading note 2 : In case the student does not arrive at
the correct final solution, but has made a serious at-
tempt at the algebra involving trig identities or com-
plex exponentials, then up to 0.2 points may be re-
warded.

B.4: For small k,

ω(k) ≈ 2JS

[
1− 1 +

1

2
(ka)2

]
= JSa2k2

The de Broglie relations are E = ℏω and p = ℏk,
plugging these into the expression for ω(k), we find

E = ℏω =
JSa2

ℏ
p2 ≡ p2

2meff
,

where
meff ≡ ℏ

2JSa2
.

Grading scheme for Task B.4. Pts
Correct Taylor expansion result 0.2
Correct relation between momentum and
wave vector

0.1

Correct relation between energy and angu-
lar frequency

0.1

Correct identification of effective mass 0.2
Total 0.6

Grading notes: If the student did not find the correct
ω(k), but states that a massive particle has energy
E = p2/2m, then give 0.1 points (with a max of 0.3
given both de Broglie relations).

B.5: In this inelastic scattering, energy and momen-
tum for the entire system (including the chain) is con-
served. In particular, the spin wave does not have a
momentum along the y-axis. Therefore

pin cos θin = pout cos θout.

Combining this with En = p2n/2mn valid for the neu-
tron, we find

Eout =

(
cos θin

cos θout

)2

Ein

2



Using energy conservation, the energy Es of the spin
wave is Es = Ein − Eout, so we get

Es =
cos2 θout − cos2 θin

cos2 θout
Ein.

Conservation of momentum along the x-axis gives

ps = pin sin θin − pout sin θout

=
√

2mnEin

(
sin θin − cos θin

cos θout
sin θout

)
.

Then from meff = p2s/2Es, we find

meff =
cos2 θout

(
sin θin − cos θin

cos θout
sin θout

)2
cos2 θout − cos2 θin

mn

which after simplifying gives

meff =
sin2(θin − θout)

cos2 θout − cos2 θin
mn =

sin(θin − θout)

sin(θin + θout)
mn.

Grading scheme for Task B.5. Pts
Conservation of momentum along y-axis 0.4
Conservation of momentum along x-axis 0.3
Conservation of energy 0.2
Relation between Eout and Ein 0.1
Correct final answer (should be in either
two forms at the end, otherwise 0.2)

0.3

Total 1.3

Part C. Phase transitions in spin chains (4.3
points)

C.1: In a Boltzmann distribution, given the system’s
temperature T , the probability to find a system in a
given state with energy εi is

pi ∝ exp

(
− εi
kBT

)
.

In this case, the probability to find a spin up state of
energy ε↑ = −hs↑ = −h is

p↑ ∼ eh/kBT .

Therefore,

p↑
p↓

=
eh/kBT

e−h/kBT
= e2h/kBT .

We also note that, normalization requires, p↑+p↓ = 1.
Thus, a full solution for p↑ and p↓ is

p↑ =
eh/kBT

eh/kBT + e−h/kBT
,(1)

p↓ =
e−h/kBT

eh/kBT + e−h/kBT
.(2)

Grading scheme for Task C.1. Pts
Use of Boltzmann factor 0.2
Correct Boltzmann factor for up and down
(0.1 each)

0.2

Correct final result for the ratio 0.1
Total 0.5

Grading note 1 : if the ratio is written immediately
without writing the Boltzmann factors separately
then give the 0.2 associated with that.

Grading note 2 : even if the final answer is
written immediately, the student must write p ∝
exp(−E/kBT ) to receive full credit.

C.2: The average polarization of the system s̄ can be
written as

s̄ =
1

N

∑
i

si,

=
1

N
[Np↑ · 1 +Np↓ · (−1)],

= p↑ − p↓,

where Np↑ and Np↓ are the number of spin vectors
pointing up and down, respectively. Substituting for
probabilities, we find

s̄ =
eh/kBT − e−h/kBT

eh/kBT + e−h/kBT
= tanh

(
h

kBT

)
.(3)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
h/ho

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

̄ s

ho≫ kBT
ho≫ kBT
ho≪ kBT

Grading scheme for Task C.2. Pts
Deducing s̄ = p↑ − p↓ 0.2
Normalization condition p↑ + p↓ = 1 0.1
Final result for s̄ 0.1
Correct sketches (0.2 each) 0.6
Total 1.0

Grading note: For a sketch to be correct, it has to in-
clude labels of both axes and has intercept at (0, 0).
For ho ≫ kBT , s̄ has to approach ±1 quickly. For
ho ≪ kBT , it should look like a line with tiny slope.
For ho ≈ kBT , it should be in-between the two cases.

C.3: The energy of the system is minimized when all
the spins are aligned, so

Eg = −J̃
∑
i

1 = −J̃(N − 1) ≈ −J̃N,(4)

where we used N ≫ 1.

3



Grading scheme for Task C.3. Pts
Realizing the spins minimize their energy
by aligning along the same direction

0.1

Correct result (both N−1 and N are fine) 0.1
Total 0.2

C.4:

E = −J̃
∑
i

sisi+1 = −J̃
∑
i

sis̄ = −J̃eff
∑
i

si,

where we define J̃eff = J̃ s̄. Using 2s̄ is double counting
the energy.

Grading scheme for Task C.4. Pts
Realizing si+1 can be replaced with s̄ 0.1
Correct final result 0.1
Total 0.2

Grading note: If the student uses 2s̄, then no partial
credit. However, no propagating error from this spe-
cific mistake for the following parts.

C.5: By looking at the earlier equation given in part
C.4, and comparing it to what we had earlier in C.2,
we find that the average polarization s̄ should satisfy
the following transcendental equation:

s̄ = tanh

(
J̃eff

kBT

)
= tanh

(
J̃ s̄

kBT

)
.

With the help of the plots we did earlier in C.2, one
can see that for J̃ ≪ kBT , there exists only one simple
solution, s̄ = 0. Where as for J̃ ≫ kBT , there exist
two non-trivial solutions. As clarified by the figure be-
low, this crossing behavior occurs when the tangent
line for tanh

(
J̃ s̄/kBT

)
at s̄ = 0 equals the slope of

s̄:

d

ds̄
tanh

(
J̃ s̄

kBTc

)∣∣∣∣∣
s̄=0

=
d

ds̄
s̄

∣∣∣∣
s̄=0

⇒ J̃

kBTc

1

cosh2
(
J̃ s̄/kBTc

)
∣∣∣∣∣∣
s̄=0

= 1

⇒ J̃

kBTc
= 1,

leading to Tc = J̃/kB .

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

̄s
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

̄s
t̄nh(Tc ̄s/T), T= Tc
t̄nh(Tc ̄s/T), T< Tc

Grading scheme for Task C.5. Pts
stating s̄ = tanh

(
J̃eff/kBT

)
0.1

Replacing J̃eff for h in s̄ results from C.2 0.2
Realizing that there is one trivial solution
for J̃ ≪ kBT

0.2

Realizing that there are two non-trivial so-
lutions for J̃ ≫ kBT

0.2

Clearly stating the condition at when num-
ber of solutions changes

0.3

Correct final result for Tc 0.2
Total 1.2

C.6: Near the critical temperature, the average polar-
ization is small. Thus, we can approximate the tran-
scendental equation as

s̄ = tanh

(
Tc

T
s̄

)
≈ Tc

T
s̄− 1

3

(
Tc

T
s̄

)3

.

We see that s̄ = 0 is still a solution. After rearranging
for s̄ ̸= 0, we get

s̄ = ±

√√√√3

[(
T

Tc

)2

−
(
T

Tc

)3
]

= ±

√
3

(
T

Tc

)2(
1− T

Tc

)
≈ ±

√
3
Tc − T

Tc
,

where we have used (T/Tc)
2 ≈ 1.
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Grading scheme for Task C.6. Pts
Using the proper approximation for tanh 0.1
Correct non-trivial solutions for s̄, even if
not fully simplified (0.1 each)

0.2

Sketch s̄ = 0 as the only solution above Tc 0.1
The non trivial solutions are vertical at Tc 0.2
s̄ = 0 is sketched as a solution for T < Tc 0.1
The two non-trivial solutions monotoni-
cally increase to ±1 at T = 0 (0.1 each)

0.2

Either non-trivial solutions have a zero
slope approaching T = 0.

0.1

Total 1.0

Grading note 1 :The vertical slope at Tc has to be very
clear. It is an important physical signature of phase
transitions, so the student has to emphasize it in the
sketch to receive credit for it.

Grading note 2: the credit associated with slope
approaching zero as T → 0 can be given even if the
student does not plot the negative solution.

C.7: In the absence of magnetic fields, when T > Tc,
there is only one solution at s̄ = 0, which means that
the system cannot maintain a net polarization. How-
ever, applying a magnetic field leads to a net magneti-
zation, which is a characteristic of paramagnets. On
the other hand, when T < Tc, the system can support
a net magnetization even in the absence of magnetic
fields, which is the characteristic of ferromagnets.

Grading scheme for Task C.7. Pts
Correct choice for T > Tc 0.1
Correct choice for T < Tc 0.1
Total 0.2

Grading note: No justification is needed for credit. If
multiple choices are chosen, then no credit. In case
the choices were changed, only give credit if the final
choice is correct and clear.
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T3. Physics of the Atmosphere (10 pts)

Part A. Surface temperature of the Earth (1.2
points)

A.1: The cross-section area receiving the solar radi-
ation (falling as parallel rays) is πR2

E , so taking into
account the absorbed portion is a fraction 1−a of the
total incident radiation, we find

P0 = (1− a)πR2
EFs.

Grading scheme for Task A.1. Pts
Correct effective cross section area A =
πR2

E

0.1

Correct final answer 0.1
Total 0.2

Grading note: If the student uses a different cross sec-
tional area, only 0.1 is given, provided it is the only
mistake.

A.2: A black body radiates according to the Stefan-
Boltzmann law, Pbd = σAT 4, where σ is the Stefan-
Boltzmann constant and A is the total surface area of
the black body. At steady state

Pbd = P0 ⇒ σ(4πR2
E)T

4
g0 = (1− a)πR2

EFs

⇒ Tg0 =

(
(1− a)

Fs

4σ

)1/4

≈ 255K ≈ −18 ◦C.

Grading scheme for Task A.2. Pts
Energy balance 0.1
Correct explicit blackbody radiation for-
mula, using the surface area of a sphere

0.1

Correct numerical value 0.1
Total 0.3

A.3: In the presence of the atmospheric layer, we
write down the energy transfer balance in two regions:
between the Earth’s surface and the atmosphere, and
between the atmosphere and outer space. Let the
power radiated from Earth be PE and the power radi-
ated from each side of the atmosphere be Patmo, then

PE = Patmo + tswP0,

tlwPE + Patmo = P0.

Solving this system of equations and using PE =
σ(4πR2

E)Tg we find

Tg =

(
1 + tsw
1 + tlw

)1/4

Tg0 ≈ 286K ≈ 13 ◦C.

Grading scheme for Task A.3. Pts
Statement on radiation balance in the re-
gion outside the atmosphere

0.1

Statement on radiation balance in the re-
gion between the atmosphere and Earth

0.2

Using tsw correctly 0.1
Using tlw correctly 0.1
Correct numerical result (if only analyti-
cal, then only 0.1)

0.2

Total 0.7

Part B. The absorption spectrum of atmo-
spheric gases (1.8 points)

B.1: Let the natural (unstretched) length of the
spring be l0 and let xA, xB be the positions of par-
ticles A and B, respectively. The equation of motion
of each particle due to the spring force can be written
as:

d2

dt2
xA = +

k

mA
(ℓ− ℓ0),

d2

dt2
xB = − k

mB
(ℓ− ℓ0),

where ℓ = xB − xA is the instantaneous length of
the spring. Taking the difference of the two equations
gives

d2

dt2
ℓ = −k

(
1

mB
+

1

mB

)
(ℓ− ℓ0).

This is the equation of motion of a single effective
particle attached to a spring with a spring constant k
and an effective mass or reduced mass µ, given by:

µ =
1

1
mA

+ 1
mB

=
mAmB

mA +mB
.

Thus, the system undergoes a simple harmonic mo-
tion with an angular frequency:

ωd =

√
k

µ
=

√
k
mA +mB

mAmB
.

Grading scheme for Task B.1. Pts
Writing down correct equations of motion
for A and B (0.1 each)

0.2

Studying the equation of motion for xA-
xB

0.1

Correct answer 0.2
Total 0.5

Grading note: A maximum of 0.2 points are given if
the correct result is cited without justification.

B.2: The difference in energy between two consecu-
tive levels in a quantum harmonic oscillator is given
by ℏω. So the energy of the photon is given by

E = ℏωd.

Grading scheme for Task B.2. Pts
Correct result (Give 0.1 if h is used in-
stead of ℏ. No other numerical factors re-
ceive credit.)

0.2

Total 0.2
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B.3: The observed shift in the spectral line from f0 is
due to the Doppler effect. When the source is moving
towards the observer with velocity v the frequency is
shifted according to

f = f0 (1 + v/c) .

Thus, the shift in frequency is given by:

f − f0 =
v

c
f0.

Grading scheme for Task B.3. Pts
Writing down an expression for Doppler ef-
fect (even if incorrect)

0.1

Correct answer 0.1
Total 0.2

B.4: To find the normalization constant C, we require
that the total probability is equal to 1. This leads to:

∞∫
−∞

p(v) dv = 1 ⇒ C

∞∫
−∞

e
− mv2

2kBT dv.

Using the integration formula provided, with x = v
and a = m

kBT we obtain:

C =

√
m

2πkBT
.

Grading scheme for Task B.4. Pts
Normalization condition (even if done in-
correctly from 0 to ∞)

0.1

Correct result 0.1
Total 0.2

B.5: Using the result of B.4, we obtain the following
expression for the speed of a molecule in terms of the
frequencies f and f0:

v =
f − f0
f0

c.

We plug this back into the probability distribution
formula to obtain:

p(f) ∝ exp

[
− mc2

2kBT

(
f − f0
f0

)2
]
.

This gives the probability distribution for observing a
molecule whose spectral line is Doppler shifted from
f0 to f .

Grading scheme for Task B.5. Pts
Replacing v by the Doppler effect result 0.1
Correct exponential dependence 0.2
Total 0.3

Grading note: If the student uses an incorrect Doppler
effect formula, but one that matches their attempt in
B.3, they get the 0.1 points.

B.6: The probability distribution p(f) follows a Gaus-
sian profile in the frequency shift f − f0. The center
of the profile is 0 and it drops to 1/e of its maximum
value when the argument of the exponential is −1.
This happens when

f∗ − f0 = f0

√
2kBT

mc2
.

The shape of the distribution can be seen in the figure
below.

Grading scheme for Task B.6. Pts
The distribution is has a single peak at
zero

0.1

The distribution is symmetric 0.1
The distribution decays to zero on both
ends

0.1

f⋆ − f0 is correct 0.1
Total 0.4

Part C. Stability of air in the atmosphere (2.7
points)

C.1: Consider a thin horizontal layer of thickness dz
and surface area S. Since the air is in hydrostatic equi-
librium, it’s weight must be balanced by the difference
in pressure forces. This results in the following rela-
tion:

p(z)S = p(z + dz)S + ρ(z)gSdz.

Simplifying and rearranging terms gives:

dp

dz
= −ρ(z)g

The negative sign indicates a decrease in pressure with
hight as expected.

Grading scheme for Task C.1. Pts
Sum of forces equals zero 0.1
Correct pressure force above and below 0.1
Correct final answer 0.1
Total 0.3

C.2: Assuming we can treat air as an ideal gas, we
can use the ideal gas law to express the density of air
in terms of its pressure and temperature

pV = nRT ⇒ p(z)V =
m

µair
RT (z).

2



Rewriting this in terms of the density gives:

ρ(z) =
p(z)µair

RT (z)
.

Now we substitute the density expression into the ex-
pression obtained in C.1. This gives:

dp

dz
= −µairp(z)

RT (z)
g

Grading scheme for Task C.2. Pts
Ideal gas law 0.1
Correct final answer 0.1
Total 0.2

C.3: Assuming an isothermal atmosphere (i.e., con-
stant temperature with altitude), T (z) = T , the equa-
tion simplifies to:

dp

p
= −µair

RT
gdz.

Integrating both sides and assuming the pressure
at height 0 is p0 leads to:

ln

[
p(z)

p0

]
= −µair

RT
gz.

In a different form:

p(z) = p0exp
(
−µair

RT
gz

)
.

Grading scheme for Task C.3. Pts
Recognizing a separable differential equa-
tion

0.1

Correct final answer 0.1
Total 0.2

C.4: Since the small mass of air is displaced adiabat-
ically, it must satisfy the adiabatic condition for an
ideal gas:

pV γ = const.,

where γ = cp/cV is the adiabatic index, and cp, cV
are the molar specific heats at constant pressure and
volume respectively. Writing the volume in terms tem-
perature and pressure using the ideal gas law gives:

p(T/p)γ = const. ⇒ p1−γT γ = const.

Taking the derivative of this expression with respect
to the height z, we obtain:

(1− γ)p−γ dp

dz
T γ + γp1−γT γ−1 dT

dz
= 0.

Simplifying and rearranging to have an expression for
the adiabatic lapse rate gives:

dT

dz
= −1− γ

γ

T (z)

p(z)

dp

dz
.

We now substitute the hydrostatic pressure gradient
obtained in C.3 to get:

dT

dz
= −1− γ

γ

T (z)

p(z)

[
−p(z)µair

RT (z)
g

]
=

1− γ

γ

µair

R
g.

But γ = cp/cV , so

dT

dz
=

1− cp/cV
cp/cV

µair

R
g = −µair

cp
g,

where we used cp − cV = R.
This expression for the adiabatic lapse rate shows

that the temperature drops linearly with height in an
adiabatic atmosphere.

Grading scheme for Task C.4. Pts
Writing the adiabatic relation in any form 0.1
Relating dT/dz to dp/dz 0.3
Correct final result 0.2
Total 0.6

C.4: To find the angular frequency of small oscilla-
tions of the air parcel, we begin by applying New-
ton’s second law, where the primary forces acting on
the parcel are buoyancy and gravity.

δm
d2z

dt2
= ρa(z)gδV − δmg,

where δm is the mass of the air parcel, δV is its vol-
ume and ρa is the density of the surrounding air. We
can express the mass of the parcel in terms of its den-
sity ρp as δm = ρpδV . Substituting and simplifying
gives:

d2z

dt2
=

ρa(z + δz)− ρp(z + δz)

ρp(z + δz)
g.

Assuming the parcel is at the same pressure as the
atmosphere at z+ δz, the density can be expressed in
terms of temperature using the ideal gas law ρ ∝ 1/T .
This allows us to rewrite the last expression as:

d2z

dt2
=

Tp(z + δz)− Ta(z + δz)

Ta(z + δz)
g.

We can now express the temperature at z+δz in terms
of the lapse rates and the temperature at z using the
definition T (z + δz) = T (z) + Γδz. Therefore:

d2z

dt2
=

T (z) + Γδz − T (z)− Γaδz

T (z) + Γaδz
g.

Simplifying the numerator and neglecting the in-
finitesimal term Γaδz in the denominator gives:

d2z

dt2
=

Γ− Γa

T
gδz.

This is the equation of a simple harmonic oscillator,
where the angular frequency is given by:

ω =

√
Γa − Γ

T
g =

√
µairg/cp − Γ

T
g

The motion is stable whenever Γa = µairg/cp > Γ.
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Grading scheme for Task C.5. Pts
Inclusion of gravitational force with parcel
density

0.2

inclusion of buoyancy force with air den-
sity

0.3

Correct equation of motion 0.2
Relating density to inverse temperature 0.2
Using appropriate approximation 0.2
Correct stability requirements 0.1
Correct angular frequency of small oscilla-
tion

0.2

Total 1.4

Part D. Moisture (2.7 points)

D.1: The change of entropy across a phase transition
(evaporation in this case) is related to the latent heat
of evaporation. If there was a mass m of liquid water,
then Qevaporation = Lm, then

∆S =
Lm

T
.

It is known that the volume of vapor is significantly
larger than the volume of liquid of the same mass,
therefore ∆V ≈ Vvapor, which can be found using the
ideal gas law

Vvapor =
nRT

ps(T )
.

The mass can be related to the number of moles n via
m = µH2On, then

dps
dT

=
µH2OLps
RT 2

.

Grading scheme for Task D.1. Pts
Correct entropy change 0.2
Vvapor ≫ Vliquid 0.2
Correct final answer 0.1
Total 0.5

D.2: We can integrate the relationship found in D.1
by separating variables to find

ln

[
ps(T )

pso

]
= −µH2OL

R

(
1

T
− 1

To

)
.

Note that L is strictly a function of temperature, but
we are assuming that L is a constant for the range of
temperatures we investigate. Rearranging, we find

ps(T ) = pso exp

[
−µH2OL

R

(
1

T
− 1

To

)]
.

Grading scheme for Task D.2. Pts
Recognizing a separable differential equa-
tion

0.1

Correct final answer 0.1
Total 0.2

D.3: Formation of liquid water happens when the par-
tial pressure of water inside the parcel reaches the sat-
uration pressure at a given temperature. The partial
pressure of water vapor pw can be related to the total
pressure of the parcel p as

pw =
nH2O

nair
p =

mH2O/µH2O

mair/µair
p = ϕ

µair

µH2O
p.

Given that the air parcel is rising adiabatically,
p1−γT γ = const., so

p(T ) = pi

(
T

Ti

)cp/R

.

Therefore, the transcendental equation that we need
to solve is

ϕ
µair

µH2O
pi

(
Tl

Ti

) cp
R

= pso exp

[
−µH2OL

R

(
1

Tl
− 1

Ti

)]
.

This can be rearranged to get

Tl =
1

1

Ti
− R

µH2OL
ln

[
ϕ

µair

µH2O

pi
pso

(
Tl

Ti

)cp/R
] .

Substituting the numerical values, we get

Tl =
1000 K

3.481− 0.4695 ln

(
Tl

290.15 K

) .

Solving this iteratively, we find T ≈ 286.8K ≈
13.7 ◦C.

Grading scheme for Task D.3. Pts
Using Dalton’s law 0.4
correctly relating the moles ratio to mass
ratio

0.2

Stating p(T ) for an adiabatic process 0.1
Understanding that partial pressure of wa-
ter needs to reach saturation for conden-
sation to start

0.5

Attempting to perform iterative search for
the solution of the transcendental equation
(by isolating T on one side)

0.4

Correct numerical solution 0.4
Total 2.0

Grading note: At most 0.4 pts can be given if the
student does not use the partial pressure of water but
uses the total pressure of air parcel.
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Part E. Sun halo (1.6 points)

E.1: Using the notations of Figure E, the total an-
gle of deviation δ can be written as the sum of the
deviations in the two refractions:

δ = α− α′ + β − β′.

Figure E.

Consider the triangle of interior angles φ, 90◦−α′ and
90◦−β′. Since the sum of these angles add up to 180◦,
we get

φ = α′ + β′,

so δ simplifies to

δ = α+ β − φ.

The relationship between α and α′ (and similarly be-
tween β and β′) is given by Snell’s law:

sinα

sinα′ = n,
sinβ

sinβ′ = n .

Expressing β in terms of α′:

sinβ = n sinβ′ = n sin(φ− α′),

From Snell’s law α′ can be written as

α′ = arcsin

(
sinα

n

)
.

Thus, β in terms of α is given by

β = arcsin

{
n sin

[
φ− arcsin

(
sinα

n

)]}
.

Finally, we get the result for δ:

δ = α+ arcsin

{
n sin

[
φ− arcsin

(
sinα

n

)]}
− φ.

Grading scheme for Task E.1. Pts
Writing Snell’s law for the two refractions
(0.1 each)

0.2

Equation for δ in terms of α, β and φ 0.2
Using that α′ + β′ = φ 0.1
Correct calculation leading to δ 0.2
Final formula for δ (any other equivalent
form is acceptable)

0.1

Total 0.8

E.2: Notice that the situation corresponds to the case
discussed in part E.1 with φ = 60◦. Here is the data
table after substituting different values of α:

α δ α δ

20◦ 27.5◦ 50◦ 22.5◦

25◦ 24.6◦ 55◦ 23.4◦

30◦ 23.0◦ 60◦ 24.7◦

35◦ 22.2◦ 65◦ 26.5◦

40◦ 21.8◦ 70◦ 28.7◦

45◦ 22.0◦ – –

Grading scheme for Task E.2. Pts
Substituting into the formula for δ cor-
rectly for all values of α (if at least 6 data
points are calculated, 0.1 p can be given)

0.2

Data points are plotted in the correct
graph

0.2

δ has a local minimum 0.2
Total 0.6

E.3: The minimum value of δ is around 21.8◦, so that
is the angle with respect to the direction of Sun where
the halo appears.

Grading scheme for Task E.3. Pts
Reading the minimal value of δ 0.1
Concluding that the angular size of halo
corresponds to the minimal value of δ

0.1

Total 0.2
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